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Communication Everywhere

Communcation exists because of the limitation of resources in a single system
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Setting Up The Stage

Given a boolean function
f : X × Y → {0, 1}

that both Alice and Bob want to compute on an input(x,y).
Let’s take X = Y = {0, 1}n.

Assumptions

i) We have a two “party” or ”player” communication system.

ii) The communication channel is completely secure and noiseless.

iii) The parties have unbounded/infinte computational power.

iv) The number of rounds or the size of the sets X ,Y are not that important to us.
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Defining The Communication Complexity

Measuring The Cost

We are interested in µ(A) =the number of bits exchanged between Alice and Bob by a
protocol A to successfully transmit f (x , y) in the last round for all possbile inputs x and
y .

We define the communication complexity of f , C(f ) := minA µ(A).

A Trivial Upper Bound

For any f , C(f ) ≤ n + 1.
In the first round Alice shares her part of the input(length n).
After having access to x , Bob computes the function and shares the output of f in the
second round using a single bit.
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Some Examples

ExM:1

Given two integers(in binary) x and y of lenth n
f (x , y) decides whether x + y is the binary representation of an EVEN integer.
Can we have a communication protocol that uses less that n + 1 bits?

Think for a moment.......
Indeed, C(f ) ≤ 2

ExM:2

Given two integers(in binary) x and y of lenth n, f (x , y) decides whether x + y is
divisible by 2016.
Can we have a communication protocol that uses less that n + 1 bits?
Think for a moment.......
C(f ) ≤ log(2016) + 1.
Round one: Alice divids x by 2016 and sends the remainder r to Bob!
Round two: Bob checks divisibility of (y + r) by 2016 and sends it back to Alice!
Hence, C(f ) ∈ O(1)!
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The Halting Problem

Fix n.
Let x ,y ∈ {0, 1}n.

H(x , y) =

{
1 if x = 1n and y is a Turing machine that halts on the input x

0 otherwise

C (f ) ≤ 2

Round one: Alice confirms whether x is of the form 1n.
Round two: Bob determines whether the Turing machine halts on x .
Remember: Alice and Bob have unbounded computational power, including the ability to
decide the Halting Problem.
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Lower Bound

EQ

EQ(x , y) =

{
1 if x = y

0 otherwise

C (EQ) ≥ n

Yao proved it.
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Lower Bound Methods

Fooling Set

We say that a function f : {0, 1}n × {0, 1}n → {0, 1} has a size M fooling set if there is
an M-sized subset S ⊂ {0, 1}n × {0, 1}n and a value b ∈ {0, 1} such that
(1) for every < x , y >∈ S , f (x , y) = b and
(2) for every distinct < x , y >,< x ′, y ′ >∈ S , either f (x , x ′) 6= b or f (x ′, y) 6= b.

Disjointness

Input strings x , y can be interpreted as characteristic vectors of subsets of {1, 2, ..., n}.

DISJ(x , y) =

{
1 if these two subsets are disjoint

0 otherwise

S =

{
(A,A) : A ⊂ {1, 2, ..., n}

}
is a fooling set of size 2n.

Sushovan Majhi Communication Complexity April 26, 2016 9 / 16



Lower Bound Methods

Fooling Set

We say that a function f : {0, 1}n × {0, 1}n → {0, 1} has a size M fooling set if there is
an M-sized subset S ⊂ {0, 1}n × {0, 1}n and a value b ∈ {0, 1} such that

(1) for every < x , y >∈ S , f (x , y) = b and
(2) for every distinct < x , y >,< x ′, y ′ >∈ S , either f (x , x ′) 6= b or f (x ′, y) 6= b.

Disjointness

Input strings x , y can be interpreted as characteristic vectors of subsets of {1, 2, ..., n}.

DISJ(x , y) =

{
1 if these two subsets are disjoint

0 otherwise

S =

{
(A,A) : A ⊂ {1, 2, ..., n}

}
is a fooling set of size 2n.

Sushovan Majhi Communication Complexity April 26, 2016 9 / 16



Lower Bound Methods

Fooling Set

We say that a function f : {0, 1}n × {0, 1}n → {0, 1} has a size M fooling set if there is
an M-sized subset S ⊂ {0, 1}n × {0, 1}n and a value b ∈ {0, 1} such that
(1) for every < x , y >∈ S , f (x , y) = b and

(2) for every distinct < x , y >,< x ′, y ′ >∈ S , either f (x , x ′) 6= b or f (x ′, y) 6= b.

Disjointness

Input strings x , y can be interpreted as characteristic vectors of subsets of {1, 2, ..., n}.

DISJ(x , y) =

{
1 if these two subsets are disjoint

0 otherwise

S =

{
(A,A) : A ⊂ {1, 2, ..., n}

}
is a fooling set of size 2n.

Sushovan Majhi Communication Complexity April 26, 2016 9 / 16



Lower Bound Methods

Fooling Set

We say that a function f : {0, 1}n × {0, 1}n → {0, 1} has a size M fooling set if there is
an M-sized subset S ⊂ {0, 1}n × {0, 1}n and a value b ∈ {0, 1} such that
(1) for every < x , y >∈ S , f (x , y) = b and
(2) for every distinct < x , y >,< x ′, y ′ >∈ S , either f (x , x ′) 6= b or f (x ′, y) 6= b.

Disjointness

Input strings x , y can be interpreted as characteristic vectors of subsets of {1, 2, ..., n}.

DISJ(x , y) =

{
1 if these two subsets are disjoint

0 otherwise

S =

{
(A,A) : A ⊂ {1, 2, ..., n}

}
is a fooling set of size 2n.

Sushovan Majhi Communication Complexity April 26, 2016 9 / 16



Lower Bound Methods

Fooling Set

We say that a function f : {0, 1}n × {0, 1}n → {0, 1} has a size M fooling set if there is
an M-sized subset S ⊂ {0, 1}n × {0, 1}n and a value b ∈ {0, 1} such that
(1) for every < x , y >∈ S , f (x , y) = b and
(2) for every distinct < x , y >,< x ′, y ′ >∈ S , either f (x , x ′) 6= b or f (x ′, y) 6= b.

Disjointness

Input strings x , y can be interpreted as characteristic vectors of subsets of {1, 2, ..., n}.

DISJ(x , y) =

{
1 if these two subsets are disjoint

0 otherwise

S =

{
(A,A) : A ⊂ {1, 2, ..., n}

}
is a fooling set of size 2n.

Sushovan Majhi Communication Complexity April 26, 2016 9 / 16



Lower Bound Methods

Fooling Set

We say that a function f : {0, 1}n × {0, 1}n → {0, 1} has a size M fooling set if there is
an M-sized subset S ⊂ {0, 1}n × {0, 1}n and a value b ∈ {0, 1} such that
(1) for every < x , y >∈ S , f (x , y) = b and
(2) for every distinct < x , y >,< x ′, y ′ >∈ S , either f (x , x ′) 6= b or f (x ′, y) 6= b.

Disjointness

Input strings x , y can be interpreted as characteristic vectors of subsets of {1, 2, ..., n}.

DISJ(x , y) =

{
1 if these two subsets are disjoint

0 otherwise

S =

{
(A,A) : A ⊂ {1, 2, ..., n}

}
is a fooling set of size 2n.

Sushovan Majhi Communication Complexity April 26, 2016 9 / 16



Fooling Set Method:Theorem

Theorem

If f has a size-M fooling set then C(f ) ≥ logM.

Corollary

1) C(DISJ) ≥ n

2) C(EQ) ≥ n
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Lower Bound Methods: The Tiling Method

M(f ) = 2n × 2n matrix of f .

Definition

An f -monochromatic tiling of M(f ) is a partition of M(f ) into disjoint monochromatic
rectangles.
We denote by χ(f ) the minimum number of rectangles in any monochromatic tiling of
M(f ).

Theorem

If f has a fooling set with m pairs, then χ(f ) ≥ m.
Also, we have C(f ) ≥ logχ(f )
One can also show that
logχ(f ) ≤ C(f ) ≤ (logχ(f ))2
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Lower Bound Methods: The Rank Method

Definition

For every function f , χ(f ) ≥ rank(M(f )).
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Summary

Results

1

log2 rank(M(f )) ≤ log2 χ(f ) ≤ C(f ) ≤ (n + 1)

2 Also,
log2 χ(f ) ≤ C(f ) ≤ 16(log2 χ(f ))2

3 There is a constant c > 1 such that,

C(f ) ∈ O(log2(rank(M(f )))c)

for all f and for all input size n.
The rank is taken over the reals. It’s still a conjecture!
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Variants Of The Basic Model And Open Problems

Variants

1 Multiparty games

2 Nondeterministic communication protocols
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Thank You!
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