Communication Complexity

Sushovan Majhi

April 26, 2016

Andrew Chi－Chih Yao姚期智


```
Born December 24,1946 (age 69)
    Shanghai, China
Residence Beijing
Citizenship United States
    Taiwan
Fields Computer science
Institutions Stanford University
    Princeton University
    Tsinghua University
    Chinese University of Hong Kong
Alma mater National Taiwan University (BS)
    Harvard University (AM, PhD)
    University of Illinois at Urbana-Champaign (PhD)
Known for Yao's Principle
Notable Pólya Prize (SIAM) (1987)
awards Knuth Prize (1996)
    Turing Award (2000)
```


Communication Everywhere

Communcation exists because of the limitation of resources in a single system

Setting Up The Stage

Given a boolean function

$$
f: X \times Y \rightarrow\{0,1\}
$$

that both Alice and Bob want to compute on an input (x, y).
Let's take $X=Y=\{0,1\}^{n}$.

Setting Up The Stage

Given a boolean function

$$
f: X \times Y \rightarrow\{0,1\}
$$

that both Alice and Bob want to compute on an input (x, y).
Let's take $X=Y=\{0,1\}^{n}$.

Assumptions

i) We have a two "party" or "player" communication system.

Setting Up The Stage

Given a boolean function

$$
f: X \times Y \rightarrow\{0,1\}
$$

that both Alice and Bob want to compute on an input (x, y).
Let's take $X=Y=\{0,1\}^{n}$.

Assumptions

i) We have a two "party" or "player" communication system.
ii) The communication channel is completely secure and noiseless.

Setting Up The Stage

Given a boolean function

$$
f: X \times Y \rightarrow\{0,1\}
$$

that both Alice and Bob want to compute on an input (x, y).
Let's take $X=Y=\{0,1\}^{n}$.

Assumptions

i) We have a two "party" or "player" communication system.
ii) The communication channel is completely secure and noiseless.
iii) The parties have unbounded/infinte computational power.

Setting Up The Stage

Given a boolean function

$$
f: X \times Y \rightarrow\{0,1\}
$$

that both Alice and Bob want to compute on an input (x, y).
Let's take $X=Y=\{0,1\}^{n}$.

Assumptions

i) We have a two "party" or "player" communication system.
ii) The communication channel is completely secure and noiseless.
iii) The parties have unbounded/infinte computational power.
iv) The number of rounds or the size of the sets X, Y are not that important to us.

Defining The Communication Complexity

Measuring The Cost

We are interested in $\mu(A)=$ the number of bits exchanged between Alice and Bob by a protocol A to successfully transmit $f(x, y)$ in the last round for all possbile inputs x and y.

Defining The Communication Complexity

Measuring The Cost

We are interested in $\mu(A)=$ the number of bits exchanged between Alice and Bob by a protocol A to successfully transmit $f(x, y)$ in the last round for all possbile inputs x and y.
We define the communication complexity of $f, C(f):=\min _{A} \mu(A)$.

Defining The Communication Complexity

Measuring The Cost

We are interested in $\mu(A)=$ the number of bits exchanged between Alice and Bob by a protocol A to successfully transmit $f(x, y)$ in the last round for all possbile inputs x and y.
We define the communication complexity of $f, C(f):=\min _{A} \mu(A)$.

A Trivial Upper Bound

For any $f, C(f) \leq n+1$.

Defining The Communication Complexity

Measuring The Cost

We are interested in $\mu(A)=$ the number of bits exchanged between Alice and Bob by a protocol A to successfully transmit $f(x, y)$ in the last round for all possbile inputs x and y.
We define the communication complexity of $f, C(f):=\min _{A} \mu(A)$.

A Trivial Upper Bound

For any $f, C(f) \leq n+1$.
In the first round Alice shares her part of the input(length n).

Defining The Communication Complexity

Measuring The Cost

We are interested in $\mu(A)=$ the number of bits exchanged between Alice and Bob by a protocol A to successfully transmit $f(x, y)$ in the last round for all possbile inputs x and y.
We define the communication complexity of $f, C(f):=\min _{A} \mu(A)$.

A Trivial Upper Bound

For any $f, C(f) \leq n+1$.
In the first round Alice shares her part of the input(length n).
After having access to x, Bob computes the function and shares the output of f in the second round using a single bit.

Some Examples

ExM:1

Given two integers(in binary) x and y of lenth n $f(x, y)$ decides whether $x+y$ is the binary representation of an EVEN integer. Can we have a communication protocol that uses less that $n+1$ bits?

Some Examples

ExM:1

Given two integers(in binary) x and y of lenth n $f(x, y)$ decides whether $x+y$ is the binary representation of an EVEN integer. Can we have a communication protocol that uses less that $n+1$ bits? Think for a moment.......

Some Examples

ExM:1

Given two integers(in binary) x and y of lenth n $f(x, y)$ decides whether $x+y$ is the binary representation of an EVEN integer. Can we have a communication protocol that uses less that $n+1$ bits?
Think for a moment.......
Indeed, $C(f) \leq 2$

Some Examples

ExM:1

Given two integers(in binary) x and y of lenth n $f(x, y)$ decides whether $x+y$ is the binary representation of an EVEN integer.
Can we have a communication protocol that uses less that $n+1$ bits?
Think for a moment.......
Indeed, $C(f) \leq 2$

ExM:2

Given two integers(in binary) x and y of lenth $n, f(x, y)$ decides whether $x+y$ is divisible by 2016.

Some Examples

ExM:1

Given two integers(in binary) x and y of lenth n $f(x, y)$ decides whether $x+y$ is the binary representation of an EVEN integer.
Can we have a communication protocol that uses less that $n+1$ bits?
Think for a moment.......
Indeed, $C(f) \leq 2$

ExM:2

Given two integers(in binary) x and y of lenth $n, f(x, y)$ decides whether $x+y$ is divisible by 2016.
Can we have a communication protocol that uses less that $n+1$ bits?

Some Examples

ExM:1

Given two integers(in binary) x and y of lenth n $f(x, y)$ decides whether $x+y$ is the binary representation of an EVEN integer.
Can we have a communication protocol that uses less that $n+1$ bits?
Think for a moment.......
Indeed, $C(f) \leq 2$

ExM:2

Given two integers(in binary) x and y of lenth $n, f(x, y)$ decides whether $x+y$ is divisible by 2016.
Can we have a communication protocol that uses less that $n+1$ bits?
Think for a moment.......

Some Examples

ExM:1

Given two integers(in binary) x and y of lenth n $f(x, y)$ decides whether $x+y$ is the binary representation of an EVEN integer.
Can we have a communication protocol that uses less that $n+1$ bits?
Think for a moment.......
Indeed, $C(f) \leq 2$

ExM:2

Given two integers(in binary) x and y of lenth $n, f(x, y)$ decides whether $x+y$ is divisible by 2016.
Can we have a communication protocol that uses less that $n+1$ bits?
Think for a moment.......
$C(f) \leq \log (2016)+1$.

Some Examples

ExM:1

Given two integers(in binary) x and y of lenth n $f(x, y)$ decides whether $x+y$ is the binary representation of an EVEN integer.
Can we have a communication protocol that uses less that $n+1$ bits?
Think for a moment.......
Indeed, $C(f) \leq 2$

ExM:2

Given two integers(in binary) x and y of lenth $n, f(x, y)$ decides whether $x+y$ is divisible by 2016.
Can we have a communication protocol that uses less that $n+1$ bits?
Think for a moment.......
$C(f) \leq \log (2016)+1$.
Round one: Alice divids x by 2016 and sends the remainder r to Bob!
Round two: Bob checks divisibility of $(y+r)$ by 2016 and sends it back to Alice! Hence, $C(f) \in O(1)$!

The Halting Problem

Fix n.
Let $x, y \in\{0,1\}^{n}$.

$$
H(x, y)=\left\{\begin{array}{ll}
1 & \text { if } x=1^{n} \\
0 & \text { otherwise }
\end{array} \text { and } y \text { is a Turing machine that halts on the input } x\right.
$$

The Halting Problem

Fix n.
Let $x, y \in\{0,1\}^{n}$.

$$
H(x, y)=\left\{\begin{array}{ll}
1 & \text { if } x=1^{n} \\
0 & \text { otherwise }
\end{array} \text { and } y \text { is a Turing machine that halts on the input } x\right.
$$

$C(f) \leq 2$

Round one: Alice confirms whether x is of the form 1^{n}.
Round two: Bob determines whether the Turing machine halts on x.
Remember: Alice and Bob have unbounded computational power, including the ability to decide the Halting Problem.

Lower Bound

$$
E Q(x, y)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

Lower Bound

$$
E Q(x, y)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

$C(E Q) \geq n$

Yao proved it.

Lower Bound Methods

Lower Bound Methods

Fooling Set

We say that a function $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ has a size M fooling set if there is an M-sized subset $S \subset\{0,1\}^{n} \times\{0,1\}^{n}$ and a value $b \in\{0,1\}$ such that

Lower Bound Methods

Fooling Set

We say that a function $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ has a size M fooling set if there is an M-sized subset $S \subset\{0,1\}^{n} \times\{0,1\}^{n}$ and a value $b \in\{0,1\}$ such that
(1) for every $<x, y>\in S, f(x, y)=b$ and

Lower Bound Methods

Fooling Set

We say that a function $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ has a size M fooling set if there is an M-sized subset $S \subset\{0,1\}^{n} \times\{0,1\}^{n}$ and a value $b \in\{0,1\}$ such that
(1) for every $<x, y>\in S, f(x, y)=b$ and
(2) for every distinct $\left\langle x, y>,<x^{\prime}, y^{\prime}>\in S\right.$, either $f\left(x, x^{\prime}\right) \neq b$ or $f\left(x^{\prime}, y\right) \neq b$.

Lower Bound Methods

Fooling Set

We say that a function $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ has a size M fooling set if there is an M-sized subset $S \subset\{0,1\}^{n} \times\{0,1\}^{n}$ and a value $b \in\{0,1\}$ such that
(1) for every $<x, y>\in S, f(x, y)=b$ and
(2) for every distinct $\left\langle x, y>,<x^{\prime}, y^{\prime}>\in S\right.$, either $f\left(x, x^{\prime}\right) \neq b$ or $f\left(x^{\prime}, y\right) \neq b$.

Disjointness

Input strings x, y can be interpreted as characteristic vectors of subsets of $\{1,2, \ldots, n\}$.

$$
\operatorname{DISJ}(x, y)= \begin{cases}1 & \text { if these two subsets are disjoint } \\ 0 & \text { otherwise }\end{cases}
$$

Lower Bound Methods

Fooling Set

We say that a function $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ has a size M fooling set if there is an M-sized subset $S \subset\{0,1\}^{n} \times\{0,1\}^{n}$ and a value $b \in\{0,1\}$ such that
(1) for every $<x, y>\in S, f(x, y)=b$ and
(2) for every distinct $\left\langle x, y>,<x^{\prime}, y^{\prime}>\in S\right.$, either $f\left(x, x^{\prime}\right) \neq b$ or $f\left(x^{\prime}, y\right) \neq b$.

Disjointness

Input strings x, y can be interpreted as characteristic vectors of subsets of $\{1,2, \ldots, n\}$.

$$
\begin{aligned}
\operatorname{DISJ}(x, y) & = \begin{cases}1 & \text { if these two subsets are disjoint } \\
0 & \text { otherwise }\end{cases} \\
S & =\{(A, \bar{A}): A \subset\{1,2, \ldots, n\}\}
\end{aligned}
$$

is a fooling set of size 2^{n}.

Fooling Set Method:Theorem

Theorem
 If f has a size- M fooling set then $C(f) \geq \log M$.

Fooling Set Method:Theorem

Theorem
 If f has a size- M fooling set then $C(f) \geq \log M$.

Corollary

1) $C(D I S J) \geq n$
2) $C(E Q) \geq n$

Lower Bound Methods: The Tiling Method

Lower Bound Methods: The Tiling Method

$M(f)=2^{n} \times 2^{n}$ matrix of f.

Lower Bound Methods: The Tiling Method

$M(f)=2^{n} \times 2^{n}$ matrix of f.

Definition

An f-monochromatic tiling of $M(f)$ is a partition of $M(f)$ into disjoint monochromatic rectangles.
We denote by $\chi(f)$ the minimum number of rectangles in any monochromatic tiling of $M(f)$.

Lower Bound Methods: The Tiling Method

$M(f)=2^{n} \times 2^{n}$ matrix of f.

Definition

An f-monochromatic tiling of $M(f)$ is a partition of $M(f)$ into disjoint monochromatic rectangles.
We denote by $\chi(f)$ the minimum number of rectangles in any monochromatic tiling of $M(f)$.

Theorem

If f has a fooling set with m pairs, then $\chi(f) \geq m$.

Lower Bound Methods: The Tiling Method

$M(f)=2^{n} \times 2^{n}$ matrix of f.

Definition

An f-monochromatic tiling of $M(f)$ is a partition of $M(f)$ into disjoint monochromatic rectangles.
We denote by $\chi(f)$ the minimum number of rectangles in any monochromatic tiling of $M(f)$.

Theorem

If f has a fooling set with m pairs, then $\chi(f) \geq m$.
Also, we have $C(f) \geq \log \chi(f)$

Lower Bound Methods: The Tiling Method

$M(f)=2^{n} \times 2^{n}$ matrix of f.

Definition

An f-monochromatic tiling of $M(f)$ is a partition of $M(f)$ into disjoint monochromatic rectangles.
We denote by $\chi(f)$ the minimum number of rectangles in any monochromatic tiling of $M(f)$.

Theorem

If f has a fooling set with m pairs, then $\chi(f) \geq m$.
Also, we have $C(f) \geq \log \chi(f)$
One can also show that
$\log \chi(f) \leq C(f) \leq(\log \chi(f))^{2}$

Lower Bound Methods: The Rank Method

Definition

For every function $f, \chi(f) \geq \operatorname{rank}(M(f))$.

Summary

Results

(1)

$$
\log _{2} \operatorname{rank}(M(f)) \leq \log _{2} \chi(f) \leq C(f) \leq(n+1)
$$

Summary

Results

(1)

$$
\log _{2} \operatorname{rank}(M(f)) \leq \log _{2} \chi(f) \leq C(f) \leq(n+1)
$$

(2) Also,

$$
\log _{2} \chi(f) \leq C(f) \leq 16\left(\log _{2} \chi(f)\right)^{2}
$$

Summary

Results

(1)

$$
\log _{2} \operatorname{rank}(M(f)) \leq \log _{2} \chi(f) \leq C(f) \leq(n+1)
$$

(2) Also,

$$
\log _{2} \chi(f) \leq C(f) \leq 16\left(\log _{2} \chi(f)\right)^{2}
$$

(3) There is a constant $c>1$ such that,

$$
C(f) \in O\left(\log _{2}(\operatorname{rank}(M(f)))^{c}\right)
$$

for all f and for all input size n.
The rank is taken over the reals.

Summary

Results

(1)

$$
\log _{2} \operatorname{rank}(M(f)) \leq \log _{2} \chi(f) \leq C(f) \leq(n+1)
$$

(2) Also,

$$
\log _{2} \chi(f) \leq C(f) \leq 16\left(\log _{2} \chi(f)\right)^{2}
$$

(3) There is a constant $c>1$ such that,

$$
C(f) \in O\left(\log _{2}(\operatorname{rank}(M(f)))^{c}\right)
$$

for all f and for all input size n.
The rank is taken over the reals. It's still a conjecture!

Variants Of The Basic Model And Open Problems

Variants

(1) Multiparty games

Variants Of The Basic Model And Open Problems

Variants

(1) Multiparty games
(2) Nondeterministic communication protocols

References

a. "Communication Complexity", Eyal Kushilevitz, Noam Nisan
b. "Computational Complexity", Arora, Barak
c. "1979 Yao",

Thank You!

